Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.015
Filtrar
1.
Ecotoxicology ; 33(3): 239-252, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573560

RESUMEN

Despite the prevalence of discharge of large volumes of heavy-metal-bearing seawater from coal-fired power plants into adjacent seas, studies on the associated ecological risks remain limited. This study continuously monitored concentrations of seven heavy metals (i.e. As, Cd, Cr, Cu, Hg, Pb, and Zn) in surface seawater near the outfall of a coal-fired power plant in Qingdao, China over three years. The results showed average concentrations of As, Cd, Cr, Cu, Hg, Pb, and Zn of 2.63, 0.33, 2.97, 4.63, 0.008, 0.85, and 25.00 µg/L, respectively. Given the lack of data on metal toxicity to local species, this study investigated species composition and biomass near discharge outfalls and constructed species sensitivity distribution (SSD) curves with biological flora characteristics. Hazardous concentrations for 5% of species (HC5) for As, Cd, Cr, Cu, Hg, Pb, and Zn derived from SSDs constructed from chronic toxicity data for native species were 3.23, 2.22, 0.06, 2.83, 0.66, 4.70, and 11.07 µg/L, respectively. This study further assessed ecological risk of heavy metals by applying the Hazard Quotient (HQ) and Joint Probability Curve (JPC) based on long-term heavy metal exposure data and chronic toxicity data for local species. The results revealed acceptable levels of ecological risk for As, Cd, Hg, and Pb, but unacceptable levels for Cr, Cu, and Zn. The order of studied heavy metals in terms of ecological risk was Cr > Cu ≈ Zn > As > Cd ≈ Pb > Hg. The results of this study can guide the assessment of ecological risk at heavy metal contaminated sites characterized by relatively low heavy metal concentrations and high discharge volumes, such as receiving waters of coal-fired power plant effluents.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Monitoreo del Ambiente/métodos , Cadmio , Plomo , Metales Pesados/toxicidad , Agua de Mar , Medición de Riesgo , Centrales Eléctricas , China , Carbón Mineral , Suelo , Contaminantes del Suelo/análisis
2.
Environ Sci Technol ; 58(12): 5187-5195, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38490225

RESUMEN

Clean hydrogen has the potential to serve as an energy carrier and feedstock in decarbonizing energy systems, especially in "hard-to-abate" sectors. Although many countries have implemented policies to promote electrolytic hydrogen development, the impact of these measures on costs of production and greenhouse gas emissions remains unclear. Our study conducts an integrated analysis of provincial levelized costs and life cycle greenhouse gas emissions for all hydrogen production types in China. We find that subsidies are critical to accelerate low carbon electrolytic hydrogen development. Subsidies on renewable-based hydrogen provide cost-effective carbon dioxide equivalent (CO2e) emission reductions. However, subsidies on grid-based hydrogen increase CO2e emissions even compared with coal-based hydrogen because grid electricity in China still relies heavily on coal power and likely will beyond 2030. In fact, CO2e emissions from grid-based hydrogen may increase further if China continues to approve new coal power plants. The levelized costs of renewable energy-based electrolytic hydrogen vary among provinces. Transporting renewable-based hydrogen through pipelines from low- to high-cost production regions reduces the national average levelized cost of renewables-based hydrogen but may increase the risk of hydrogen leakage and the resulting indirect warming effects. Our findings emphasize that policy and economic support for nonfossil electrolytic hydrogen is critical to avoid an increase in CO2e emissions as hydrogen use rises during a clean energy transition.


Asunto(s)
Gases de Efecto Invernadero , Carbón Mineral , Efecto Invernadero , Hidrógeno , Centrales Eléctricas , Dióxido de Carbono/análisis
4.
Environ Sci Pollut Res Int ; 31(17): 26170-26181, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38498134

RESUMEN

The wet flue gas desulfurization (WFGD) system of coal-fired power plants shows a good removal effect on condensable particulate matter (CPM), reducing the dust removal pressure for the downstream flue gas purification devices. In this work, the removal effect of a WFGD system on CPM and its organic pollutants from a coal-fired power plant was studied. By analyzing the organic components of the by-products emitted from the desulfurization tower, the migration characteristics of organic pollutants in gas, liquid, and solid phases, as well as the impact of desulfurization towers on organic pollutants in CPM, were discussed. Results show that more CPM in the flue gas was generated by coal-fired units at ultra-low load, and the WFGD system had a removal efficiency nearly 8% higher than that at full load. The WFGD system had significant removal effect on two typical esters, especially phthalate esters (PAEs), with the highest removal efficiency of 49.56%. In addition, the WFGD system was better at removing these two esters when the unit was operating at full load. However, it had a negative effect on n-alkanes, which increased the concentration of n-alkanes by 8.91 to 19.72%. Furthermore, it is concluded that the concentration distribution of the same type of organic pollutants in desulfurization wastewater was similar to that in desulfurization slurry, but quite different from that in coal-fired flue gas. The exchange of three organic pollutants between flue gas and desulfurization slurry was not significant, while the concentration distribution of organic matters in gypsum was affected by coal-fired flue gas.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Gases , Centrales Eléctricas , Carbón Mineral , Alcanos
5.
J Environ Manage ; 355: 120311, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38432007

RESUMEN

Variable renewable energy (VRE) is the most promising form of primary generation under a carbon neutrality target due to its environmental benefits, incentive policy, and technological progress. However, the increasing proportion of VRE generation, such as solar and wind power, has sharply increased integration cost and reduced power grid stability. This study uses portfolio theory to investigate China's optimal power generation portfolio by 2050 considering flexibility constraint and system cost, including technical and integration costs. The results demonstrate that non-fossil-fuel power generation technologies have cost and emission reduction advantages over fossil-fuel-based technologies. VRE generation technologies must be developed in synergy with other forms of power generation when considering flexibility requirement and integration cost. A complete phase-out of fossil-fuel power generation technologies in China appears unlikely in the study period. Gas-fired and coal-fired power generation are the pillar forms of power generation to meet future flexibility needs.


Asunto(s)
Carbono , Combustibles Fósiles , Carbono/análisis , Carbón Mineral , Viento , China , Dióxido de Carbono/análisis , Centrales Eléctricas
6.
Environ Geochem Health ; 46(3): 107, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446285

RESUMEN

Potentially toxic elements (Pb and Cd) contamination of soil can adversely affect human health. Moreover, these metal ions interact with the gut microbiota after entering the human digestive system. Based on the physiologically based extraction test and the simulator of human intestinal microbial ecosystem, the bioaccessibility of Pb and Cd in soils contaminated with lead-acid power plants was assessed. The gastric stage exhibited the greatest average bioaccessibility of lead and cadmium (63.39% and 57.22%), followed by the small intestinal stage (6.86% and 36.29%); due to gut microorganisms, the bioaccessibility of lead and cadmium was further reduced in the colon stage (1.86% and 4.22%). Furthermore, to investigate soil contamination's effects on gut microbes, 16S rRNA high-throughput sequencing was used to identify the gut microbial species after the colon period. Due to Pb and Cd exposure, the relative abundance of Firmicutes and unidentified_Bacteria decreased, while the relative abundance of Proteobacteria, Synergistota, and Bacteroidota increased. The relationship between environmental factors and the number of microbial species in the gut was also examined using Spearman correlation analysis. Pb and Cd exposure has been found to affect the composition and structure of the gut microbiota.


Asunto(s)
Cadmio , Ecosistema , Humanos , Plomo , ARN Ribosómico 16S/genética , Centrales Eléctricas , Suelo
7.
Chemosphere ; 353: 141638, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442775

RESUMEN

Condensable particulate matter (CPM) from coal combustion is the focus of current pollutant emission studies, and CPM can be divided into inorganic and organic fractions according to the component characteristics. At present, the effects of different factors in the combustion process on the organic and inorganic components of CPM have not been discussed systematically. Here, we conducted combustion experiments collected the generated CPM on a well-controlled drip tube furnace, and investigated the effects of different factors on the generation of organic and inorganic components of CPM by varying the furnace wall insulation temperature, the ratio of gas supply components and the water vapor content in the flue gas. The results showed that the increase in combustion temperature (1300-1500 °C) and oxygen concentration (15-25%) reduced the total CPM generation by 9.8% and 19.98%, respectively, and the intervention of water vapor increased the ability of the whole CPM sampling device to capture ultrafine condensable particles. The generation of CPM organic components decreased with the enhancement of combustion temperature and oxygen content on combustion characteristics, and alkanes shifted to low carbon content. The amount of CPM inorganic components increased with the increase of water vapor content in the flue gas, and this change was dominated by SO42-. The above results provide a feasible idea for the next step of the precise reduction of CPM components.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Carbón Mineral , Vapor , Centrales Eléctricas , Oxígeno
8.
Environ Sci Pollut Res Int ; 31(15): 23193-23210, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38413527

RESUMEN

Floating photovoltaics (FPVs) are appearing as a promising and an alternative renewable energy opinion in which PV panels are mounted on floating platforms in order to produce electricity from renewable energy on water such as seas, dams, rivers, oceans, canals, fish farms, and reservoirs. So far, such studies related to the body knowledge on financial, technical, and environmental aspects of installation of FPV have not been performed in Turkey while expanding steadily in other countries. In this study, suitable site selection for installation of FPV power plants on three lakes in Turkey was studied by performing geographic information system (GIS) and the fuzzy analytic hierarchy process (FAHP) as multi-criteria decision-making (MCDM) method. This detailed study revealed that the criterion of global horizontal irradiance (GHI) was determined as the most crucial criterion for the installation of FPV on Beysehir Lake, Lake of Tuz, and Van Lake. Additionally, it was clearly seen that the Beysehir Lake had the highest value approximately 52% among other lakes for installation, that is why Beysehir Lake is selected as the best option for installation of an FPV system with this multi-criteria approach.


Asunto(s)
Proceso de Jerarquía Analítica , Sistemas de Información Geográfica , Turquia , Energía Renovable , Centrales Eléctricas
9.
J Environ Manage ; 354: 120437, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402787

RESUMEN

While wind power plants are an important contribution to the production of renewable energy to limit climate change, collision mortality from turbines is a danger for birds, including many protected species. To try to mitigate collision risks, automatic detection systems (ADSs) can be deployed on wind power plants; these work by detecting incoming birds using a detection/classification process and triggering a specific reaction (scaring off the bird or shutting down the turbine). Nonetheless, bird fatalities still occur at ADS-equipped wind power plants, which raises the question of the performance of these tools. To date, the lack of a transparent, peer-reviewed experimental process to compare the performance of types of ADS has meant there is no robust protocol to assess these systems. With the aim of filling this gap, we developed two standardized protocols that provide objective and unbiased assessments of the performance of different types of ADS, based on their probability of detecting/classifying birds at risk of collision. Both protocols rely on precise 3D tracking of wild birds by human observers using a laser rangefinder, and the comparison of these tracks with those detected and recorded by an ADS. The first protocol evaluates a system's general performance, generating comparable data for all types of ADS. In this protocol, detection/classification probability is estimated conditional on several abiotic and biotic environmental factors such as bird size, distance from the target, the flight angle and azimuth of the bird, as well as weather conditions. The second protocol aims to verify that the performance of an ADS installed on a given wind power plant complies with its regulatory requirements. In this protocol, detection/classification probability is specifically estimated for a given target species at a given regulatory detection distance. This protocol also estimates the proportion of time an ADS is functional on site over a year, and the proportion of reaction orders successfully operated by wind turbines. These protocols have been field-tested and made publicly available for use by government agencies and wind power plant operators.


Asunto(s)
Aves , Centrales Eléctricas , Animales , Cambio Climático , Probabilidad , Energía Renovable , Humanos
10.
PLoS One ; 19(2): e0298433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38359049

RESUMEN

Coal fly ash from a coal fired power plant is a significant anthropogenic source of various heavy metals in surrounding soils. In this study, heavy metal contamination in topsoil around Sahiwal coal fired power plant (SCFPP) was investigated. Within distance of 0-10, 11-20, 21-30 and 31-40 km of SCFPP, total 56 soil samples were taken, 14 replicate from each distance along with a background subsurface soil sample beyond 60 km. Soil samples were subjected to heavy metals analysis including Fe, Cu and Pb by Atomic Absorption Spectrophotometer (AAS). Composite samples for each distance were analyzed for Al, As, Ba, Cd, Co, Cr, Mn, Mo, Ni, Se, Sr, Zn by Inductively Coupled Plasma (ICP). Pollution indices of exposed soil including Enrichment Factor (EF), Contamination Factor (CF), Geoaccumulation Index (Igeo), and Pollution Load Index (PLI) were calculated. Ecological risk index ([Formula: see text]) of individual metals and the Potential Ecological Risk Index (PERI) for all metals were determined. Soil samples within 40 km of SCFPP were significantly polluted with Pb (mean 2.81 ppm), Cu (mean 0.93 ppm), and Fe (mean 7.93 ppm) compared to their background values (Pb 0.45, Cu 0.3, and Fe 4.9 ppm). Some individual replicates were highly contaminated where Pb, Fe, and Cu values were as high as 6.10, 35.4 and 2.51 ppm respectively. PLI, Igeo, CF, and EF for metals classified the soil around CFPP as "moderate to high degree of pollution", "uncontaminated to moderately contaminated", "moderate to very high contamination", and "moderate to significant enrichment" respectively with average values for Cu as 2.75, 0.82, 3.09, 4.01; Pb 4.79, 1.56, 6.16, 7.76, and for Fe as 1.20, 0.40, 1.62, 3.35 respectively. Average Ecological Risk Index ([Formula: see text]) of each metal and Potential Ecological Risk Index (PERI) for all metals classified the soils as "low risk soils" in all distances. However, ([Formula: see text]) of Pb at a number of sites in all distances have shown "moderate risk". The linear correlation of physico-chemical parameter (EC, pH, Saturation %) and metals have recorded several differential correlations, however, their collective impact on Pb in 0-10 km, has recorded statistically significant correlation (p-value 0.01). This mix of correlations indicates complex interplay of many factors influencing metal concentrations at different sampling sites. The concentration of As, Cr, Co, Cd, and Zn was found within satisfactory limits and lower than in many parts of the world. Although the topsoil around SCFPP is largely recorded at low risk, for complete assessment of its ecological health, further research considering comprehensive environmental parameters, all important trace metals and variety of input pathways is suggested.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Pakistán , Cadmio/análisis , Plomo/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Medición de Riesgo , Metales Pesados/análisis , Suelo , Centrales Eléctricas , Carbón Mineral/análisis , China
11.
Environ Sci Technol ; 58(8): 3787-3799, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38350416

RESUMEN

Plug-in electric vehicles (PEVs) can reduce air emissions when charged with clean power, but prior work estimated that in 2010, PEVs produced 2 to 3 times the consequential air emission externalities of gasoline vehicles in PJM (the largest US regional transmission operator, serving 65 million people) due largely to increased generation from coal-fired power plants to charge the vehicles. We investigate how this situation has changed since 2010, where we are now, and what the largest levers are for reducing PEV consequential life cycle emission externalities in the near future. We estimate that PEV emission externalities have dropped by 17% to 18% in PJM as natural gas replaced coal, but they will remain comparable to gasoline vehicle externalities in base case trajectories through at least 2035. Increased wind and solar power capacity is critical to achieving deep decarbonization in the long run, but through 2035 we estimate that it will primarily shift which fossil generators operate on the margin at times when PEVs charge and can even increase consequential PEV charging emissions in the near term. We find that the largest levers for reducing PEV emissions over the next decade are (1) shifting away from nickel-based batteries to lithium iron phosphate, (2) reducing emissions from fossil generators, and (3) revising vehicle fleet emission standards. While our numerical estimates are regionally specific, key findings apply to most power systems today, in which renewable generators typically produce as much output as possible, regardless of the load, while dispatchable fossil fuel generators respond to the changes in load.


Asunto(s)
Contaminación del Aire , Gasolina , Humanos , Gasolina/análisis , Emisiones de Vehículos/prevención & control , Emisiones de Vehículos/análisis , Centrales Eléctricas , Políticas , Carbón Mineral , Gas Natural , Vehículos a Motor
12.
Environ Sci Pollut Res Int ; 31(13): 19148-19165, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379043

RESUMEN

Coal-fired power plants (CFPPs) are one of the most significant sources of mercury (Hg) emissions certified by the Minamata Convention, which has attracted much attention in recent years. In this study, we used the Web of Science and CiteSpace to analyze the knowledge structure of this field from 2000 to 2022 and then reviewed it systematically. The field of Hg emissions from coal-fired power plants has developed steadily. The research hotspots can be divided into three categories: (1) emission characterization research focused on speciation changes and emission calculations; (2) emission control research focused on control technologies; (3) environmental impact research focused on environmental pollution and health risk. In conclusion, using an oxygen-rich atmosphere for combustion and installing high-efficiency air pollution control devices (APCDs) helped to reduce the formation of Hg0. The average Hg removal rates of APCDs and modified adsorbents after ultra-low emission retrofit were distributed in the range of 82-93% and 41-100%, respectively. The risk level of Hg in combustion by-products was highest in desulfurization sludge (RAC > 10%) followed by fly ash (10% < RAC < 30%) and desulfurization gypsum (1% < RAC < 10%). Additionally, we found that the implementation of pollution and carbon reduction policies in China had reduced Hg emissions from CFPPs by 45% from 2007 to 2015, increased the efficiency of Hg removal from APCDs to a maximum of 96%, and reduced global transport and health risk of atmospheric Hg. The results conjunctively achieved by CiteSpace, and the literature review will enhance understanding of CFPP Hg emission research and provide new perspectives for future research.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Mercurio/análisis , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Centrales Eléctricas , China , Bibliometría
13.
J Environ Manage ; 353: 120231, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38295638

RESUMEN

As environmental flow demands become better characterized, improved water allocation and reservoir operating solutions can be devised to meet them. However, significant economic trade-offs are still expected, especially in hydropower-dominated basins. This study explores the use of the electricity market as both an institutional arrangement and an alternative financing source to handle the costs of implementing environmental flows in river systems managed for hydropower benefits. A framework is proposed to identify hydropower plants with sustainable operation within the portfolio of power sources, including a cost-sharing mechanism based on the electricity market trading to manage a time-step compensation fund. The objective is to address a common limitation in the implementation of environmental flows by reducing the dependence on government funding and the necessity for new arrangements. Compensation amounts can vary depending on ecosystem restoration goals (level of flow regime restoration), hydrological conditions, and hydropower sites characteristics. The application in the Paraná River Basin, Brazil, shows basin-wide compensation requirements ranging from zero in favorable hydrological years to thousands of dollars per gigawatt-hour generated in others. Each electricity consumer's contribution to the compensation fund is determined by their share of energy consumption, resulting in values ranging from cents for residential users to thousands of dollars for industrial facilities. Finally, the compensation fund signals the economic value of externalities in energy production. For residential users, achieving varying levels of ecosystem restoration led to an electricity bill increase of less than 1 %. For larger companies, the increase ranged from less than 1 %-12 %.


Asunto(s)
Ecosistema , Restauración y Remediación Ambiental , Hidrología/métodos , Centrales Eléctricas , Ríos , Electricidad
14.
J Hazard Mater ; 465: 133387, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38198872

RESUMEN

Respirable fine-grained fly ash (RFA) is captured very inefficiently by existing air purification devices of power plant, leading to increasing concerns regarding their migration and subsequent interaction with body due to fine particle size and its complex toxic composition. Trace elements of RFA in three groups with five different sizes between 8-13 µm were analyzed in terms of available concentration, speciation and risk effects. The concentration, pollution level and ecological risk level of elements in RFA were related to particle sizes. Chronic non-carcinogenic effect risk (NER) and carcinogenic effect risk (CER) were negatively correlated with particle size. The individual weight of exposed subjects, corresponding trace elements concentration and ingestion rate in RFA were three significant variables influencing CER. NER and CER had a tenfold exaggerated effect when calculated using total element concentration of RFA. In addition to individual differences and exposure conditions, trace element properties, speciation and available concentration were the dominant factor responsible for ecological and environmental effects of trace elements in RFA, following the order As>Ni, Mn>Cr>Pb>Cu>Zn. Results of this work highlight the effects and differences of trace elements in RFA on ecology and health, and provide a basis for further pollution control and human health warning.


Asunto(s)
Metales Pesados , Oligoelementos , Humanos , Ceniza del Carbón/análisis , Oligoelementos/análisis , Contaminación Ambiental , Tamaño de la Partícula , Centrales Eléctricas , Medición de Riesgo , Monitoreo del Ambiente/métodos , Metales Pesados/análisis
15.
J Environ Manage ; 352: 120017, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38198840

RESUMEN

There are various climate policies to decarbonize the energy matrix of a country. In the case of Chile, a carbon tax of 5 USD/tCO2 was initially implemented, and later, a schedule was established for the phase-out of coal-fired thermoelectric plants, all the above in the absence of subsidies for non-conventional renewable energy (NCRE). This study uses a computable general equilibrium (CGE) model and microsimulations to assess the contribution of current climate policies and other more demanding scenarios that accelerate the decarbonization of the Chilean energy matrix, considering economic, environmental, and distributional impacts. Specifically, carbon taxes are simulated with and without complementary climate policies (phase-out of coal-fired power plants and NCRE subsidies). The results show that the scenarios that combine the three climate policies generate a greater decrease in greenhouse gas emissions (40.4% âˆ¼ 57.5%). Besides, the drop in GDP is more pronounced when coal-fired thermoelectric plants phase out (0.3% additional), and NCRE subsidies contribute to moderately reducing emissions. However, NCRE subsidies reduce the negative effect on households' expenditure and income, especially in the poorest quintile. Finally, microsimulations show marginal changes in income distribution and an increase of up to 0.4 percentage points in the poverty rate.


Asunto(s)
Carbono , Carbón Mineral , Chile , Centrales Eléctricas , Energía Renovable , Impuestos , Dióxido de Carbono/análisis
16.
Environ Sci Pollut Res Int ; 31(6): 8883-8897, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38180667

RESUMEN

Heavy metal pollutants such as Hg, As, Pb, Cr, and Cd emitted from coal and waste combustion have received widespread attention. In this study, we systematically investigated the emission characteristics of heavy metals in waste incineration and coal-fired flue gases, focused on testing the removal effect of self-made cold electrode electrostatic precipitator (CE-ESP) on heavy metals in flue gas, and made a comparative analysis with the existing air pollution control devices (APCDs). Test results from waste incineration power plant showed that each APCD showed a certain effect on the removal of heavy metals in condensable particulate matter (CPM), with an average removal efficiency of bag filter was 86%, but its effect on Hg removal was slightly worse. Under the coupled field with electrified cold electrode plate operation mode, the average removal efficiency of CE-ESP on heavy metals in CPM was as high as 93%, including 76% for Hg. The removal efficiency of heavy metals (especially Hg) in CPM increased with the increase of flue gas temperature difference between inlet and outlet of CE-ESP. Test results from this coal-fired power plant showed that heavy metals were enriched in fly ash to a higher degree than in slag, the synergistic control of heavy metals in submicron particulate matter by the dust remover was not obvious, and there was a significant correlation between each heavy metal emission factor and its content in coal. Under the temperature field with non-electric cold electrode plate operation mode, the overall effect of CE-ESP on the removal of gaseous heavy metals was better than that of particulate heavy metals. Under the conventional electric field operation mode, CE-ESP was less effective in removing particulate Cr and gaseous Hg0. Under the coupled field with electrified cold electrode plate operation mode, the average removal efficiencies of CE-ESP for particulate and gaseous heavy metals were 82.37% and 76.16%, respectively.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Metales Pesados , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Ceniza del Carbón/análisis , Mercurio/análisis , Polvo , Centrales Eléctricas , Incineración , Carbón Mineral/análisis , Gases
17.
Environ Sci Technol ; 58(5): 2574-2583, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38266484

RESUMEN

To recover multimedia mercury from coal-fired power plants, a novel N-containing conjugated polymer (polyaniline and polypyrrole) functionalized fly ash was prepared, which could continuously adsorb 99.2% of gaseous Hg0 at a high space velocity of 368,500 h-1 and nearly 100% of aqueous Hg2+ in the solution pH range of 2-12. The adsorption capacities of Hg0 and Hg2+ reach 1.62 and 101.36 mg/g, respectively. Such a kind of adsorbent has good environmental applicability, i.e. good resistance to coexisting O2/NO/SO2 and coexisting Na+/K+/Ca2+/Mg2+/SO42-. This adsorbent has very low specific resistances (6 × 106-5 × 109 Ω·cm) and thus can be easily collected by an electrostatic precipitator under low-voltage (0.1-0.8 kV). The Hg-saturated adsorbent can desorb almost 100% Hg under relatively low temperature (<250 °C). Characterization and theoretical calculations reveal that conjugated-N is the critical site for adsorbing both Hg0 and Hg2+ as well as activating chlorine. Gaseous Hg0 is oxidized and adsorbed in the form of HgXClX(ad), while aqueous Hg2+ is adsorbed to form a complex with conjugated-N, and parts of Hg2+ are reduced to Hg+ by conjugated-N. This adsorbent can be easily large-scale manufactured; thus, this novel solid waste functionalization method is promising to be applied in coal-fired power plants and other Hg-involving industrial scenes.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Ceniza del Carbón/química , Contaminantes Atmosféricos/análisis , Mercurio/análisis , Multimedia , Polímeros , Carbón Mineral , Pirroles , Gases , Centrales Eléctricas
18.
Sci Total Environ ; 914: 169936, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199370

RESUMEN

Nuclear power plants, recognized for their extended operational life, minimal greenhouse gas emissions, and high-power density, are deemed as reliable energy sources. Nonetheless, concerns persist regarding the radioactive discharges from these plants and their potential impact on health and the environment. To comprehend the radiological implications of such releases, this study presents, for the first time, an analysis of radiological data from 7 Indian nuclear power plants (NPPs), collected by Indian environmental survey laboratories (ESL) over the past two decades (2000-2020). This dataset encompasses radioactivity concentrations in the atmospheric, aquatic, and terrestrial environments within a 30 km radius of each NPP, as well as the annual cumulative external gamma doses recorded by environmental thermoluminescence dosimeters (TLDs). The analysis yielded several key findings: (i) Radioactivity concentrations around the NPPs were low and comparable to values measured at other nuclear power plant sites worldwide; (ii) Tritium concentrations in receiving water bodies were <1 % of the internationally recommended limit of 10,000 Bq/l; (iii) The estimated total radiation doses to the public were at most 10 % of the stipulated regulatory dose limit of 1000 µSv and consistently decreased over the study period and (iv) Variations in doses among the NPP sites were primarily attributed to legacy technology used in specific reactors. These results indicate efficient and secure reactor operations and the minimal contribution of Indian nuclear power plants to anthropogenic doses in the country. The findings hold potential significance for reinforcing India's commitment to advancing its nuclear power program.


Asunto(s)
Monitoreo de Radiación , Succinimidas , Contaminantes Radiactivos del Agua , Plantas de Energía Nuclear , Monitoreo de Radiación/métodos , Tritio , Contaminantes Radiactivos del Agua/análisis , Centrales Eléctricas
19.
Bioresour Technol ; 393: 130051, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37995873

RESUMEN

This study aims to propose a biological system that allows for direct utilization of flue gas for carbon dioxide capture and utilization by microalgae. The strain Chlorella sp. ABC-001 is employed for its high growth rate as well as lipid and carbohydrate content. Toxicity tests showed that cell growth was unaffected by NO, but the presence of SO2 showed critical damage on cell growth. Hence, an extremophile alga, Galdieria sulphuraria 5587.1 was applied to build a dual-strain cultivation system to mitigate the effect of SO2 toxicity and increase CO2 capture efficiency. All SO2 was removed by Galdieria culture and the system exhibited stable growth from a simulated flue gas stream containing CO2, NO and SO2. Combined CO2 biofixation rate of 793 mg/L/d and lipid productivity of 113 mg/L/d was achieved. The results showed that this new cultivation system is a promising alternative for reducing CO2 emissions from power plants.


Asunto(s)
Chlorella , Microalgas , Dióxido de Carbono , Lípidos , Centrales Eléctricas , Biomasa
20.
Environ Res ; 243: 117734, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38029827

RESUMEN

Under the influence of human activities, atmospheric mercury (Hg) concentrations have increased by 450% compared with natural levels. In the context of the Minamata Convention on Mercury, which came into effect in August 2017, it is imperative to strengthen Hg emission controls. Existing Air Pollution Control Devices (APCDs) combined with collaborative control technology can effectively remove Hg2+ and Hgp; however, Hg0 removal is substandard. Compared with the catalytic oxidation method, Hg0 removal through adsorbent injection carries the risk of secondary release and is uneconomical. Magnetic adsorbents exhibit excellent recycling and Hg0 recovery performance and have recently attracted the attention of researchers. This review summarizes the existing magnetic materials for Hg0 adsorption and discusses the removal performances and mechanisms of iron, carbon, mineral-based, and magnetosphere materials. The effects of temperature and different flue gas components, including O2, NO, SO2, H2O, and HCl, on the adsorption performance of Hg0 are also summarized. Finally, different regeneration methods are discussed in detail. Although the research and development of magnetic adsorbents has progressed, significant challenges remain regarding their application. This review provides theoretical guidance for the improvement of existing and development of new magnetic adsorbents.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Humanos , Contaminantes Atmosféricos/análisis , Mercurio/análisis , Oxidación-Reducción , Fenómenos Magnéticos , Carbón Mineral , Centrales Eléctricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...